Development of a 3D printed micro simulated moving bed chromatography system
-
Autor:
Diehm, J. / Ballweg, T. / Franzreb, M. (2023)
-
Quelle:
Journal of Chromatography A, 2023, 1695, 463928
- Datum: April 2023
-
Abstract
In the 1960s, chromatography processes were revolutionized by the invention of simulated moving bed chromatography. This method not only enhances the separation performance and resin utilization in comparison to batch-chromatography, it has also a much lower buffer consumption. While simulated moving bed chromatography nowadays is applied for a wide range of industrial applications, it was never transferred to the micro-scale (in regards to column and system volume). In our opinion a micro simulated moving bed chromatography system (µSMB) would be a useful tool for many applications, ranging from early process development and long term studies to downstream processing of speciality products. We implemented such a µSMB with a 3D printed central rotary valve and a microfluidic flow controller as flow source. We tested the system with a four zone open loop setup for the separation of bovine serum albumin and ammonium sulfate with size exclusion chromatography. We used four process points and could achieve desalting levels of BSA ranging from 94% to 99%, with yields ranging form 65% to 88%. Thus, we were able to achieve comparable results to common lab scale processes. With a total dead volume of 358 µL, including all sensors, connections and the valve, this is, to the best of our knowledge, the smallest SMB system that was ever built and we were able to perform experiments with feed flow rates reaching as low as 15 µL/min.