Comparing Carbon Origami from Polyaramid and Cellulose Sheets

  • Autor:

    Islam, M. / Weidler, P.G. / Mager, D. / Korvink, J./ Martinez-Duarte, R. (2022)

  • Quelle:

    Micromachines 2022, 13, 4, 503,

  • Datum: März 2022
  • Abstract

    Carbon origami enables the fabrication of lightweight and mechanically stiff 3D complex architectures of carbonaceous materials, which have a high potential to impact a wide range of applications positively. The precursor materials and their inherent microstructure play a crucial role in determining the properties of carbon origami structures. Here, non-porous polyaramid Nomex sheets and macroporous fibril cellulose sheets are explored as the precursor sheets for studying the effect of precursor nature and microstructure on the material and structural properties of the carbon origami structures. The fabrication process involves pre-creasing precursor sheets using a laser engraving process, followed by manual-folding and carbonization. The cellulose precursor experiences a severe structural shrinkage due to its macroporous fibril morphology, compared to the mostly non-porous morphology of Nomex-derived carbon. The morphological differences further yield a higher specific surface area for cellulose-derived carbon. However, Nomex results in more crystalline carbon than cellulose, featuring a turbostratic microstructure like glassy carbon. The combined effect of morphology and glass-like features leads to a high mechanical stiffness of 1.9 ± 0.2 MPa and specific modulus of 2.4 × 104 m2·s−2 for the Nomex-derived carbon Miura-ori structure, which are significantly higher than cellulose-derived carbon Miura-ori (elastic modulus = 504.7 ± 88.2 kPa; specific modulus = 1.2 × 104 m2·s−2) and other carbonaceous origami structures reported in the literature. The results presented here are promising to expand the material library for carbon origami, which will help in the choice of suitable precursor and carbon materials for specific applications.