Determination of antibiotic resistance genes in a WWTP-impacted river in surface water, sediment, and biofilm: Influence of seasonality and water quality

  • Autor:

    Reichert, G. / Hilgert, S. / Alexander, J. / Rodrigues de Azevedo, J. C. / Morck, T. / Fuchs, S. / Schwartz, T. (2021)

  • Quelle:

    Science of The Total Environment, 2021,768,144526,

  • Datum: Januar 2021
  • Abstract

    Many pathogenic bacteria are adapted to live in aquatic habitats, which makes rivers possible sources and spread pathways of antibiotic resistance, since they usually receive effluents from wastewater treatment plants (WWTP), possibly containing antibiotic residues and also antibiotic-resistant bacteria. This study investigates different monitoring strategies to identify the occurrence of antibiotic-resistant bacteria in rivers. We analyzed the presence of 13 antibiotic resistance genes (ARGs) and seven gene markers for facultative pathogenic bacteria (FPB) with qPCR in sampling sites upstream and downstream of a small WWTP in Southern Germany. Five sampling campaigns were conducted from February to June 2019. Surface water, sediment, and biofilm samples were analyzed. The biofilm was collected from an artificial sampler placed in the river. blaTEM, ermB, tetM, and sul1 genes were detected in all samples analyzed. The results showed there was a previous background in the river, but the WWTP and the water quality of the river influenced the concentration and occurrence of ARGs and FPB. Genes representing resistance against strong or last-resort antibiotics, such as mecA, blaCMY-2, blaKPC-3, and mcr-1, and multidrug resistance were also detected, mainly in samples collected downstream of the WWTP. Downstream of the WWTP, the occurrence of ARG and FPB correlated with ammoniacal nitrogen, while upstream of the WWTP correlated with turbidity, suspended solids, and seasonal factors such as UVA radiation and the presence of macrophytes. Biofilm samples presented higher abundances of ARGs and FPB. The biofilm sampler was efficient and allowed to collect biofilms from specific periods, which helped to identify seasonal patterns.