Institute of Functional Interfaces

High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): Mechanism analysis and model-based prediction

  • chair:

    Qin, W /Silvestre, M / Li, Y / Franzreb, M (2016) 

  • place:

    J Chromatogr A.,(2016), 5, 1432, 84-91. doi: 10.1016/j.chroma.2016.01.006. 

  • Date: Februar 2016


Metal-organic framework (MOF) MIL-100(Fe) with well-defined thickness was homogenously coated onto the outer surface of magnetic microparticles via a liquid-phase epitaxy method. The as-synthesized MIL-100(Fe) was used as stationary phase for high-performance liquid chromatography (HPLC) and separations of two groups of mixed aromatic hydrocarbons (toluene, styrene and p-xylene; acetanilide, 2-nirtoaniline and 1-naphthylamine) using methanol/water as mobile phase were performed to evaluate its performance.

Increasing water content of the mobile phase composition can greatly improve the separations on the expense of a longer elution time. Stepwise elution significantly shortens the elution time of acetanilide, 2-nirtoaniline and 1-naphthylamine mixtures, while still achieving a baseline separation. Combining the experimental results and in-depth modeling using a recently developed chromatographic software (ChromX), adsorption equilibrium parameters, including the affinities and maximum capacities, for each analyte toward the MIL-100(Fe) are obtained.

In addition, the pore diffusivity of aromatic hydrocarbons within MIL-100(Fe) was determined to be 5×10(-12)m(2)s(-1). While the affinities of MIL-100(Fe) toward the analyte molecules differs much, the maximum capacities of the analytes are in a narrow range with q*MOFmax,toluene=3.55molL(-1), q*MOFmax,styrene or p-xylene=3.53molL(-1), and q*MOFmax,anilines=3.12molL(-1) corresponding to approximately 842 toluene and 838 styrene or p-xylene, and 740 aniline molecules per MIL-100(Fe) unit cell, respectively.