Publications Surface Catalysis

[99] Structural Evolution of a-Fe2O3(0001) Surfaces Under Reduction Conditions Monitored by Infrared Spectroscopy, Ludger Schöttner, Alexei Nefedov, Chengwu Yang, Stefan Heissler, Yuemin Wang, Christof Wöll, Front. Chem. 7:451, doi: 10.3389/fchem.2019.00451 (2019)

[98] Impact of Synthesis Parameters on the Formation of Defects in HKUST-1, Eur.J.Chem., 5, 925-931, 10.1002/ejie.201601239 (2017)
[97] Surface Chemistry of methanol on different ZNO surfaces studied by vibrational spectroscopy, Lanying Jin, Yuemin Wang, Jinjuan Liu, Cristof Wöll, Phys.Chem.Chem.Phys., 10.1039/C7CPO1715D (2017)
[96a] Photoaktivierung von Cerdioxid: Die Rolle von Defekten, C. W. Yang, X. Yu, P. N. Pleßow, S. Heissler, P- G. Weidler, A. Nefedov, F. Studt, Y. Wang, and C. Wöll, Angew. Chem.10.1002/ange.201707965 (2017)
[96b] Rendering Photoreactivity to Ceria: The Role of Defects, C. W. Yang, X. Yu, P. N. Pleßow, S. Heissler, P- G. Weidler, A. Nefedov, F. Studt, Y. Wang, and C. Wöll, Angew. Chem. Int. Ed. 10.1002/anie.201707965 (2017)
[95] Surface Chemistry of Methanol on Different ZnO Surfaces Studied by Vibrational                    Spectroscopy, L. Jin, and Y. Wang, Phys. Chem. Chem. Phys. 19, 12992-13001 (2017)
[94] IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: Bridging the materials gap (review article), Y. Wang, and C. Wöll, Chem. Soc. Rev. 47, 1875-1932 (2017)
[93a] Oberflächenfacettierung und Rekonstruktion von Ceroxid-Nanopartikeln, C. W. Yang, X. Yu, S. Heissler, A. Nefedov, S. Colussi, J. Llorca, A. Trovarelli, Y. Wang, and C. Wöll, Angew. Chem. 129, 382–387 (2017)
[93b] Surface faceting and reconstruction of ceria nanoparticles (cover page), C. W. Yang, X. Yu, S. Heissler, A. Nefedov, S. Colussi, J. Llorca, A. Trovarelli, Y. Wang, and C. Wöll, Angew. Chem. Int. Ed. 56, 375–379 (2017)
[92] Encapsulation of bimetallic metal nanoparticles into robust Zr-based metal-organic frameworks: Evaluation of the catalytic potential for size-selective hydrogenation, C. Rösler, S. Dissegna, V. L. Rechac, M. Kauer, P. Guo, S. Turner, K. Ollegott, H. Kobayashi, T. Yamamoto, D. Peeters, Y. Wang, S. Matsumura, G. Van Tendeloo, H. Kitagawa, M. Muhler, F. X.Llabrés i Xamena and R. A. Fischer, Chem. Eur. J. 23, 3583-3594 (2017)
[91] Impact of synthesis parameters on the formation of defects in HKUST-1, W. Zhang, M. Kauer, P. Guo, S. Kunze, S. Cwik, M. Muhler, Y. Wang, K. Epp, G. Kieslich and R. A. Fischer, Eur. J. Inorg. Chem. 5, 925–931 (2017)
[90] IR-spectroscopy of CO adsorption on mixed-terminated ZnO surfaces, M. Buchholz, X. J. Yu, C. W. Yang, S. Heissler, A. Nefedov, Y. Wang, and C. Wöll, Surf. Sci. 652, 247–252 (2016)
[89] Simultaneously introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu3-xPdx(BTC)2]n, W. Zhang, Z. Chen, M. Al-Naji, P. Guo, S. Cwik, O.Halbherr, Y. Wang, M. Muhler, N. Wilde, R. Glaser and R. A Fischer, Dalton Trans. 45, 14883 (2016)                          [88] Interaction of formaldehyde with the rutile TiO2(110) surface: A combined experimental and theoretical study, X. J. Yu, Z. R. Zhang, C. W. Yang, F. Bebensee, S. Heissler, A. Nefedov, M. R. Tang, Q. F. Ge, L. Chen, B. D. Kay, Z. Dohnalek, Y. Wang, and C. Wöll, J. Phys. Chem. C 120, 12626-12636 (2016)                                                                                                             [87] Ruthenium metal–organic frameworks with different defect types: Influence on porosity, sorption, and catalytic properties, W. Zhang, M. Kauer, O. Halbherr, K. Epp, P. Guo, M. I. Gonzalez, D. J. Xiao, C. Wiktor, F. X. LIabres i Xamena, C.Wöll, Y. Wang, M.Muhler, and R. A. Fischer, Chem. Eur. J. 22, 14297-14307 (2016)
[86] Interaction of carboxylic acids with rutile TiO2(110): IR-investigations of terephthalic, and benzoic acid adsorbed on a single crystal substrate, M. Buchholz, M. C. Xu, H. Noei, P. Weidler, A. Nefedov, K. Fink, Y. Wang, and C. Wöll
Surf. Sci. 643, 117–123 (2016)
[85] A multitechnique study of CO adsorption on the TiO2 anatase (101) surface, M. Setvin, M. Buchholz, W. Y. Hou, C. Zhang, B. Stoger, J. Hulva, T. Simschitz, X. Shi, J. Pavelec, G. S. Parkinson, M. C. Xu, Y. Wang, M. Schmid, C. Wöll, A. Selloni and U. Diebold, J. Phys. Chem. C 119, 21044–21052 (2015)
[84] The interaction of formic acid with zinc oxide: A combined experimental and theoretical study on single crystal and powder samples, M. Buchholz, Q. Li, H. Noei, A. Nefedov, Y. Wang, M. Muhler, K. Fink and C. Wöll
Top. Catal. 58, 174-183 (2015)
[83] Ionic Liquid-Assisted Sonochemical Preparation of CeO2 Nanoparticles for CO Oxidation, T. Alammar, H. Noei, Y. Wang, W. Grünert, A.-V. Mudring, ACS Sustainable Chem. Eng. 3, 42–54 (2015)
[82] Structural complexity in MOFs: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers, Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, O. Kozachuk , B. Albada, N. Metzler-Nolte, M. Muhler, Y. Wang, R. Schmid, and R. A. Fischer J. Am. Chem. Soc. 136, 9627-9636 (2014)
[81a] Multifunktionale, defect-manipulierte Ru-MOFs: Sorption und katalytische Eigenschaften, O. Kozachuk, I. Luz, F. X. Llabres i Xamena, H. Noei, M. Kauer, E. D. Bloch, B. Marler, Y. Wang, M. Muhler, and R. A. Fischer, Angew. Chem. 126, 7178-7182 (2014)
[81b] Multifunctional, defect engineered Ru-MOFs: Sorption and catalytic properties, O. Kozachuk, I. Luz, F. X. Llabres i Xamena, H. Noei, M. Kauer, E. D. Bloch, B. Marler, Y. Wang, M. Muhler, and R. A. Fischer, Angew. Chem. Int. Ed. 53, 7058-7062 (2014)
[80] NO adsorption and reaction on single crystal rutile TiO2(110) surfaces studied using UHV-FTIRS, M. C. Xu, Y. Wang, S. J. Hu, R. B. Xu, Y. J. Cao, S. S. Yan, Phys. Chem. Chem. Phys. 16, 14682-14687 (2014)
[79a] Tieftemperatur-CO-Oxidation mit Au3+-Ionen auf TiO2, W. Grünert, D. Großmann, H. Noei, M. M. Pohl, I. Sinev, A. De Toni, Y. Wang, and M. Muhler, Angew. Chem. 126, 3309 (2014)
[79b] Low-temperature CO oxidation with TiO2-supported Au3+ ions, W. Grünert, D. Großmann, H. Noei, M. M. Pohl, I. Sinev, A. De Toni, Y. Wang, and M. Muhler, Angew. Chem. Int. Ed. 53, 3245 (2014)
[78] How Ddifferent characterization techniques elucidate the nature of the gold species in a polycrystalline Au/TiO2 catalyst, W. Grünert, D. Grossmann, H. Noei, M. M. Pohl, I. Sinev, A. De Toni, Y. Wang, and M. Muhler, Chem. Ing. Techn. 86, 1883-1889 (2014)
[77] Synergetic effect between Cu0 and Cu+ in the Cu-Cr catalysts for hydrogenolysis of glycerol, Z. Xiao, X. Wang, J. Xiu, Y. Wang, C. T. Williams, C. Liang, Catal. Today 234, 200-207 (2014)
[76] Surface-modified TiO2 photocatalysts prepared by a photosynthetic route: Mechanism, enhancement, and limits,
S. Neubert, A. Ramakrishnan, J. Strunk, H. Shi, B. Mei, L. Wang, M. Bledowski, D. A. Guschin, M. Kauer, Y. Wang, M. Muhler, and R. Beranek, ChemPlusChem. 79, 163-170 (2014)
[75] Vibrational spectroscopic studies on pure and metal-covered metal oxide surfaces (feature article), H. Noei, L. Jin, H. Qiu, M. Xu, Y. Gao, M. Kauer, Ch. Wöll, M. Muhler, and Y. Wang, Phys. Status Solidi B 250, 1204-1221 (2013)
[74] Coverage-induced hydrogen transfer on ZnO surfaces: from ideal to real systems H. Noei, F. Gallino, L. Jin, J., Zhao, C. Di Valentin, Y. Wang Angew. Chem. 125, 2031 (2013); Angew. Chem. Int. Ed. 52, 1977 (2013)
[73] Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO2 interface,M. Farnesi Camellone, J. Zhao, L. Jin, Y. Wang, M. Muhler, D. Marx, Angew. Chem. 125, 5592 (2013); Angew. Chem. Int. Ed. 52, 5780 (2013)
[72a] Chemische Aktivität von dünnen Oxidschichten: Starke Träger-Wechselwirkungen ergeben eine neue ZnO-Dünnfilmphase, V. Schott, H. Oberhofer, A. Birkner, M. Xu, Y. Wang, M. Muhler, K. Reuter, Ch. Wöll, Angew. Chem. 125, 12143-12147 (2013)
[72b] Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO
V. Schott, H. Oberhofer, A. Birkner, M. Xu, Y. Wang, M. Muhler, K. Reuter, Ch. Wöll, Angew. Chem. Int. Ed. 52, 11925-11929 (2013)
[71] Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide, M. Ma, H. Noei, B. Mienert, J. Niesel, E. Bill, M. Muhler, R. A. Fischer, Y. Wang, U. Schatzschneider, and N. Metzler-Nolte, Chem. Eur. J. 19, 6785-6790 (2013)
[70] CO adsorption on a mixed-valence ruthenium metal-organic framework studied by UHV-FTIR spectroscopy and DFT calculations, H. Noei, O. Kozachuk, S. Amirjalayer, S. Bureekaew, M. Kauer, R. Schmid, B. Marler, M. Muhler, R. A. Fischer, and Y. Wang,  Phys. Chem. C 117, 5658–5666 (2013)
[69] Mild yet phase-selective preparation of TiO2 nanoparticles from ionic liquids: A critical study, T. Alammar, H. Noei, Y. Wang, and A.-V. Mudring, Nanoscale 5, 8045-8050 (2013)
[68] A combined experimental and computational study the adsorption and reactions of NO on rutile TiO24, D. Stodt, H. Noei, C. Hättig, and Y. Wang, Phys. Chem. Chem. Phys. 15, 466-472 (2013)
[67a] Anwendung des oberflächenwissenschaftlichen Ansatzes auf Reaktionen an Oxidpulvern: Die Bedeutung der IR-Spektroskopie, M. Xu, H. Noei, K. Kink, M. Muhler, Y. Wang, and Ch. Wöll, Angew. Chem. 124, 4810-4813 (2012)
[67b] The surface science approach for understanding reactions on oxide powders: The importance of IR spectroscopy, M. Xu, H. Noei, K. Kink, M. Muhler, Y. Wang, and Ch. Wöll, Angew. Chem. Int. Ed. 51, 4731-4734 (2012)                                                                                        [66] Probing the mechanism of low-temperature CO oxidation on Au/ZnO catalysts by vibrational spectroscopy, H. Noei, A. Birkner, K. Merz, M. Muhler, and Y. Wang, J. Phys. Chem. C 116, 11181-11188 (2012)
[65] Low-temperature CO oxidation over Cu-based metal-organic frameworks, monitored by using FTIR spectroscopy, H. Noei, S. Amirjalayer, M. Muller, X. Zhang, R. Schmid, M. Muhler, R. A. Fischer, and Y. Wang, ChemCatChem. 4, 755-759 (2012)

 

[64] Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy, M. Xu, H. Noei, M. Buchholz, M. Muhler, Ch. Wöll, and Y. Wang, Catal. Today 182, 12-15 (2012)
[63] Defects in MOFs: A thorough characterization, P. St. Petkov, G. N. Vayssilov, J. Liu, O. Shekhah, Y. Wang, Ch. Wöll, and T. Heine, ChemPhysChem. 14, 2025–2029 (2012)
[62] On the complexation kinetics for metallization of organic layers: palladium onto a pyridine-terminated araliphatic thiol film, M. I. Muglali, J. X. Liu, A. Baschir, D. Borissov, M. Xu, Y. Wang, Ch. Wöll, and M. Rohwerder, Phys. Chem. Chem. Phys. 14, 4703–4712 (2012)
[61] Rare-earth substituted HfO2 thin films grown by metalorganic chemical vapor deposition, A. Devi, S. Cwik, K. Xu, A.P. Milanov, H. Noei, Y. Wang, D. Barreca, J. Meijer, D. Rogalla, D. Kahn, R. Cross, H. Parala, and S. Paul, Thin Solid Films 520, 4512−4517 (2012)
[60] Activation of carbon dioxide on ZnO nanoparticles studied by vibrational spectroscopy, H. Noei, C. Wöll, M. Muhler, and Y. Wang, J. Phys. Chem. C 115, 908 (2011)
[59] Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared, absorption spectroscopy, M. Xu, Y.K. Gao, E. M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, and Ch.Wöll, Phys. Rev. Lett. 106, 138302 (2011)
[58] ZnO@ZIF-8: stabilization of quantum confined ZnO nanoparticles by a zinc, methylimidazolate framework and their surface structural characterization probed by CO2 adsorption, D. Esken, H. Noei, Y. Wang, C. Wiktor, S. Turner, G. van Tendeloo, and R. A. Fischer, J. Mater. Chem. 21, 5907-5915 (2011)                                                                                 [57] The interaction of carbon monoxide with clean and surface-modified zinc oxide nanoparticles: A UHV-FTIRS study, H. Noei, C. Wöll, M. Muhler, and Y. Wang, Appl. Catal. A. 391, 31 (2011)
[56] Au@MOF-5 and Au/MO(x)@MOF-5 (M=Zn, Ti; x=1,2): Preparation and microstructural characterization, M. Muller, S. Turner, OI. Lebedev, Y. Wang, G. van Tendeloo, and R. A. Fischer, Eur. J. Inorg. Chem. 12, 1876-1887 (2011)
[55] Shallow donor states induced by in-diffused Cu in ZnO: A combined HREELS and hybrid DFT study, H. Qiu, F. Gallino, C. Di Valentin, and Y. Wang, Phys. Rev. Lett. 106, 066401 (2011)
[54] Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1, structure type as thin films on oxide surfaces, O. Kozachuk, K. Yusenko, H. Noei, Y. Wang, S. Walleck, T. Glaser, and R. A. Fischer, Chem. Commun. 47, 8509-8511 (2011)
[53] Use of confocal flurescence microscopy to compare different methods of modifying, metal-organic framework (MOF) crystals with dyes, M.Y. Ma, A. Gross, D. Zacher, A. Pinto, H. Noei, Y. Wang, R. A. Fischer, N. Metzler Nolte, CrystEngComm. 13, 2828-2832 (2011)
[52] Combined theoretical and experimental study on the adsorption of methanol, on the ZnO(10-10) surface, J. Kiss, D. Langenberg, D. Silber, F. Traeger, L. Jin, H. Qiu, Y. Wang, B. Meyer, C. Wöll, J. Phys. Chem. A 115, 7180-7188 (2011)
[51] Hydrogen loading of oxide powder particles: A transmission IR study for the case, of zinc oxide, H. Noei, H. Qiu, Y. Wang, M. Muhler, and Ch. Wöll, ChemPhysChem, 11, 3604-3607 (2010)
[50] Comment on “Imaging of the hydrogen subsurface site in rutile TiO2”, M. Calatayud, X.- L. Yin, H. Qiu, Y. Wang, A. Birkner, C. Minot, and Ch. Wöll, Phys. Rev. Lett. 104, 119603 (2010)
[49] On the active state of stearate-based Cu colloids applied in methanol synthesis:, structural changes driven by strong metal-support interactions, S. Schimpf, A. Rittermeier, X. Zhang, Z. Li, M. Spasova, M. W.E. van den Berg, M. Farle, Y. Wang, R. A. Fischer, and M. Muhler, ChemCatChem. 2, 214-222 (2010)
[48] Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt, loading for oxygen reaction
C. Liang, L. Ding, C. Li, M. Pang, D. Su, W. Li, and Y. Wang, Energy Environ. Sci. 3, 1121-1127 (2010)
[47] Monitoring electronic structure changes of TiO2(110) via sign reversal of adsorbate vibrational bands,M. Xu, Y. K. Gao, Y. Wang, and Ch. Wöll, Phys. Chem. Chem. Phys. 12, 3649-3652 (2010)
[46] A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection, s well as for transmission geometries, Y. Wang, A. Glenz, M. Muhler, and Ch. Wöll, Rev. Sci. Instrum. 80, 113108, (2009)
[45] Interaction of NO with the O-rich RuO2(110) Surface at 300 K, K. Jacobi and Y. Wang, Surf. Sci. 603, 1600-1604 (2009, special issue in honor of Gerhard Ertl’s Nobel Prize)
[44] Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy, Y. Wang, and Ch. Wöll
Surf. Sci. 603, 1589-1599 (2009, special issue in honor of Gerhard Ertl’s Nobel Prize)
[43] Formation of weakly bound, ordered adlayers of CO on rutile TiO2(110): A combined experimental and theoretical study, M. Kunat, F. Traeger, H. Qiu, Y. Wang, A. C. Van Veen, Ch. Wöll, and P. Kowacik, B. Meyer, C. Hättig, and D. Marx, J. Chem. Phys. 130, 144703 (2009)
[42] Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction, S. Kundu, T.C. Nagaiah, W. Xia, Y. Wang, S. Van Dommele, J.H. Bitter, M. Santa, G. Grundmeier, M. Bron, W. Schuhmann, and M. Muhler, J. Phys. Chem. C 113, 14302-14310 (2009)
[41] Synthesis and catalytic performance of Pd nanoparticle/functionalized CNF, composites by a two-step chemical vapor deposition of Pd(allyl)(Cp) precursor, C. Liang, W. Xia, M. van den Berg, Y. Wang, H. Soltani-Ahmadi, O. Schlüter, R. A. Fischer, and M. Muhler,Chem. Mater. 21, 2360-2366 (2009)
[40] Nanometer-sized titania hosted inside MOF-5, M. Müller, X. Zhang, Y. Wang, and R. A. Fischer,Chem. Commun. 2009, 119-121 (2009)
[39] The Formation of colloidal copper nanoparticles stabilized by zinc stearate:One-pot single-step synthesis and characterization of the core-shell particles, A. Rittermeier, S. Miao, M. K. Schröter, X. Zhang, M. W. E. van den Berg, S. Kundu, Y. Wang, S. Schimpf, R. A. Fischer, and M. Muhler, Phys. Chem. Chem. Phys. 11, 8358-8366 (2009)
[38] Ionization energies of shallow donor states in ZnO created by reversible formation and depletion of H interstitials
H. Qiu, B. Meyer, Y. Wang, and Ch. Wöll, Phys. Rev. Lett. 101, 236401 (2008)
[37] Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study, S. Kundu, Y. Wang, W. Xia, and M. Muhler, J. Phys. Chem. C 112, 16869-16878 (2008)
[36] The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy, H. Noei, H. Qiu, Y. Wang, E. Löffler, Ch. Wöll, and M. Muhler, Phys. Chem. Chem. Phys. 10, 7092-7097 (2008)
[35] Direct monitoring of photo-induced reactions on well-defined metal oxide surfaces using vibrational spectroscopy, C. Rohmann, Y. Wang, M. Muhler, H. Idriss and Ch. Wöll, Chem. Phys. Lett. 460, 10-12 (2008)
[34] Carbon-carbon bond formation on model titanium oxide surfaces: Identification of surface reaction intermediates by HREELS, H. Qiu, H. Idriss, Y. Wang, and Ch. Wöll, J. Phys. Chem. C 112, 9828-9834 (2008)
[33] High-resolution electron energy loss spectroscopy on perfect and defective oxide surfaces (review article), Y. Wang, Z. Phys. Chem. 222, 927-964 (2008)
[32] Diffusion versus desorption: Complex behaviour of H atoms on an oxide surface, X.-L. Yin, M. Calatayud, H. Qiu, Y. Wang, A. Birkner, C. Minot, and Ch. Wöll, ChemPhysChem. 9, 253-256 (2008)
[31] Chemical vapor synthesis of secondary carbon nanotubes catalysed by iron nanoparticles, electrodeposited on primary carbon nanotubes, W. Xia, X. Chen, S. Kundu, X. Wang, G. Grundmeier, Y. Wang, M. Bron, W. Schuhmann, and M. Muhler, Surface & Coatings Technology, 201, 9232-9237 (2007)
[30a] Die Steuerung der Reaktivität von Oxidoberflächen durch ladungsakzeptierende Adsorbate, Y. Wang, X. Xia, A. Urban, H. Qiu, J. Strunk, B. Meyer, M. Muhler, and Ch. Wöll, Angew. Chem. 119, 7456-7459 (2007)
[30b] Tuning the reactivity of oxide surfaces by charge-accepting coadsorbates, Y. Wang, X. Xia, A. Urban, H. Qiu, J. Strunk, B. Meyer, M. Muhler, and Ch. Wöll, Angew. Chem. Int. Ed. 46, 7315-7318 (2007)
[29] Controlled etching of carbon nanotubes by iron-catalyzed steam gasification, W. Xia, V. Hagen, S. Kundu, Y. Wang, Ch. Somsen, G. Eggeler, G. Sun, G. Grundmeier, M. Stratmann, and M. Muhler, Adv. Mater. 19, 3648-3652 (2007)
[28a] CO2-Aktivierung durch ZnO unter Bildung eines ungewöhnlichen dreizähnigen, Oberflächencarbonats
Y. Wang, R. Kováik, B. Meyer, K. Kotsis, D. Stodt, V. Staemmler, H. Qiu, F. Traeger, D. Langenberg, M. Muhler, and Ch. Wöll, Angew. Chem. 119, 5722-5725 (2007)
[28b] CO2 activation by ZnO via formation of an unusual tridentate surface carbonate, Y. Wang, R. Kováik, B. Meyer, K. Kotsis, D. Stodt, V. Staemmler, H. Qiu, F. Traeger, D. Langenberg, M. Muhler, and Ch. Wöll, Angew. Chem. Int. Ed. 46, 5624-5627 (2007)
[27] The synthesis of ZrO2/SiO2 nanocomposites by the two-step CVD of a volatile halogen-free Zr alkoxide in a fluidized-bed reactior, W. Xia, Y. Wang, V. Hagen, A. Heel, G. Kasper, U. Patil, A. Devi, and M. Muhler, Chem. Vap. Deposition 13, 37-41 (2007)
[26] Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption, W. Xia, Y. Wang, R. Bergsträer, S. Kundu, and M. Muhler, Appl. Surf. Sci. 254, 247-250 (2007)
[25] Interaction of Hydrogen with RuO2(110) Surfaces: Activity Differences between Various Oxygen Species, K. Jacobi, Y. Wang, and G. Ertl, J. Phys. Chem. B 110, 6115-6122 (2006)
[24] Reply to “Comment on ‘Interaction of hydrogen with RuO2(110) surfaces: Activity differences between various oxygen species’ ”, K. Jacobi, Y. Wang, and G. Ertl, J. Phys. Chem. B 110, 22948-22949 (2006)
[23] Spectroscopic evidence for the partial dissociation of H2O on ZnO(10-10), Y. Wang, M. Muhler, and Ch. Wöll
Phys. Chem. Chem. Phys. 8, 1521-1524 (2006)
[22] Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers W. Xia, D. Su, A. Birkner, L. Ruppel, Y. Wang, Ch. Wöll, J. Qian, Ch. Liang, G. Marginean, W. Brandl, and M. Muhler, Chem. Mater. 17, 5737-5742 (2005)
[21] Hydrogen induced metallicity on the ZnO(10-10) surface, Y. Wang, B. Meyer, X. Yin, M. Kunat, D. Langenberg, F. Traeger, A. Birkner, Ch. Wöll, Phys. Rev. Lett. 95, 266104 (2005)
[20] Adsorption of methane and ethane on RuO2(110) surfaces, U. Erlekam, U.A. Paulus, Y. Wang, H. P. Bonzel, K. Jacobi, and G. Ertl, Z. Phys. Chem. 219, 891 (2005)
[19] Catalytic oxidation of ammonia on RuO2 (110) surfaces: Mechanism and selectivity, Y. Wang, K. Jacobi, W. –D. Schöne, and G. Ertl, J. Phys. Chem. B 109, 7883-7893 (2005)
[18] Adsorption and interaction of ethylene on RuO2(110) surfaces, U.A. Paulus, Y. Wang, H.P. Bonzel, K. Jacobi, and G. Ertl, J. Phys. Chem. B 109, 2139-2148 (2005)
[17] Adsorption and reaction of ammonia on the Ru(11-20) surface, Y. Wang, and K. Jacobi, J. Phys. Chem. B 108, 14726 (2004)
[16] Inhibition of CO oxidation on RuO2(110) by adsorbed H2O molecules, U.A. Paulus, Y. Wang, S. H. Kim, P. Geng, J. Wintterlin, K. Jacobi, and G. Ertl, J. Chem. Phys. 121, 11301 (2004)
[15] Adsorption of ethylene on stoichiometric RuO2(110), U.A. Paulus, Y. Wang, H.P. Bonzel, K. Jacobi, and G. Ertl
Surf. Sci. 566, 989-994 (2004)
[14] Interaction of NO with the RuO2(110) surface, Y. Wang, K. Jacobi, and G. Ertl, J. Phys. Chem. B 107, 13918-13924 (2003)
[13] CO adsorption on the reduced RuO2(110) surface, U. A. Paulus, Y. Wang, K. Jacobi, and G. Ertl, Surf. Sci. 547, 349-354 (2003)
[12] Interaction of CO with the stoichiometric RuO2(110) surface, S. H. Kim, U. A. Paulus, Y. Wang, J. Wintterlin, K. Jacobi, and G. Ertl, J. Chem. Phys. 119, 9729-9736 (2003)
[11] Vibrational states of hydrogen monolayer on the Pt(111) surface, S.C. Badescu, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl, P. Salo, T. Ala-Nissila, and S. C. Ying, Phys. Rev. B 68, 205401 (2003)
[10] Vibrational characterization of NH and NH2 reaction intermediates on the Ru(11-20) surface, Y. Wang, and K. Jacobi, Surf. Sci. 513, 83-92 (2002)

[9] Carbonate formation on the O-enriched RuO2(110) surface, A. Lafosse, Y. Wang, and K. Jacobi, J. Chem. Phys. 117, 2823 (2002)

[8] Stepwise dehydrogenation of NH3 at the Ru(11-20) surface, Y. Wang, A. Lafosse, and K. Jacobi, Surf. Sci. 507, 773-777 (2002)
[7] Energetics and vibrational states for hydrogen on Pt(111), S. C. Badescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedürftig and G. Ertl, Phys. Rev. Lett. 88, 136101 (2002)
[6] Adsorption and reaction of CO2 on the RuO2(110) surface, Y. Wang, A. Lafosse, and K. Jacobi, J. Phys. Chem. B 106, 5476-5482 (2002)
[5] From monomers to ice - new vibrational characteristics of H2O adsorbed on Pt(111), K. Jacobi, K. Bedürftig, Y. Wang, and G. Ertl, Surf. Sci. 472, 9-20 (2001)
[4] The molecular adsorption of CO on the Ru(11-20) surface, J. Wang, Y. Wang, and K. Jacobi, Surf. Sci. 482-485, 153-159 (2001)
[3] The Dissociation of CO on the Ru(11-20) surface, J. Wang, Y. Wang, and K. Jacobi, Surf. Sci. 488, 83-89 (2001)
[2] Adsorption and thermal dehydrogenation of ammonia on Ru(11-21), K. Jacobi, Y. Wang, C.Y. Fan and H. Dietrich, J. Chem. Phys. 115, 4306 (2001)
[1] Vibrational and structural properties of OH adsorbed on Pt(111), K. Bedürftig, S. Völkening, Y. Wang, J. Wintterlin, K. Jacobi und G. Ertl, J. Chem. Phys. 111, 11147-11154 (1999)