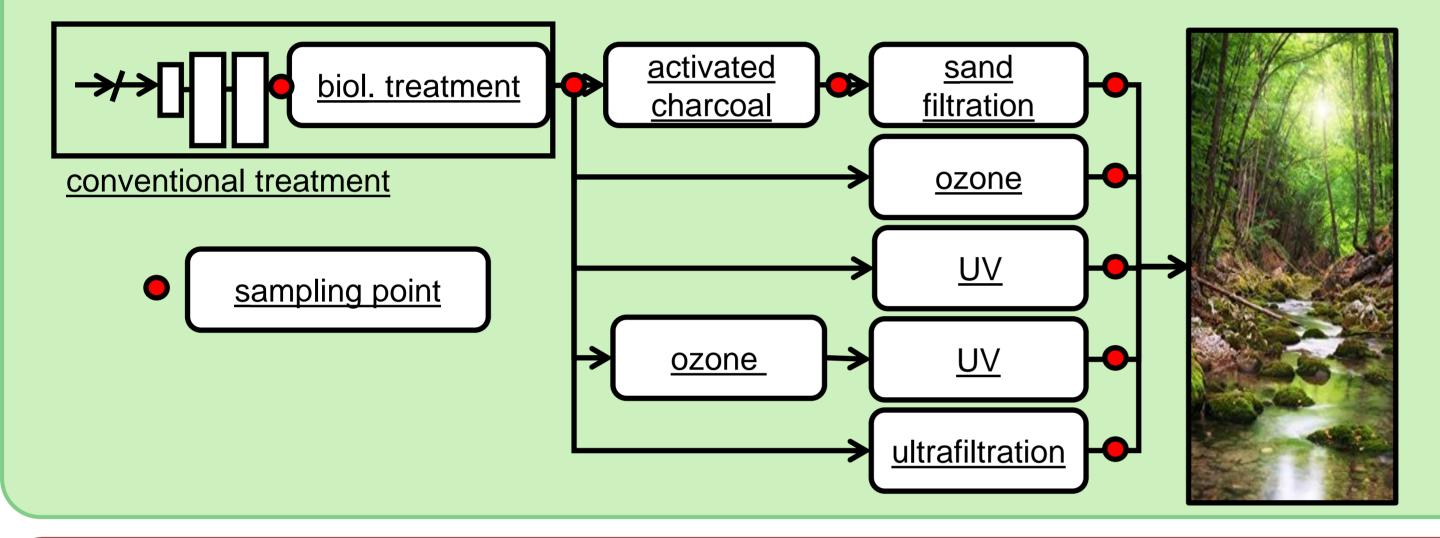


COMBINED ADVANCED PROCESSES IN WASTEWATER TREATMENT FOR REDUCTION OF ANTIBIOTIC RESISTANT BACTERIA

<u>Norman Hembach¹</u>, Arne Wieland², Christian Hiller³, Thomas Schwartz¹

¹Karlsruhe Institute for Technology (KIT), Germany, ²Xylem Services Ltd., Germany, ³Zweckverband Klärwerk Steinhäule, Germany

CONVENTIONAL TREATMENT


- Upon international studies , the current conventional wastewater treatment is not suited to eliminate unwanted bacteria as well as antibiotic resistance genes and contributes to their spread to the environment.
- Calculations with real data from the wastewater treatment plant (WWTP; 440.000 P.E. and 80.000-100.000m³/d):
 each day 2.35x10¹⁴ facultative-pathogenic bacteria and 9.69x10¹¹ copies of antibiotic resistance genes reach the environment, despite activated charcoal treatment and sand filtration at the WWTP.
- Theoretically does every 23rd bacterium released contains one antibiotic resistance gene!!!

CONCLUSION

- Ozonation is capable to reduce microbiological contaminations including ARGs/ARBs.
- **Reduction efficiency** is depending on the ARG carrying bacteria.
- Additional UV-treatment demonstrated a synergistic benefit with ozone.

METHODS

- Normalization to 100 mL water.
- Quantification of facultative-pathogenic bacteria and clinically relevant resistance genes using qPCR.
- For validation of molecular methods, cultivation based assays were performed with taxonomic-selective agar plates.

Molecular biology - qPCR

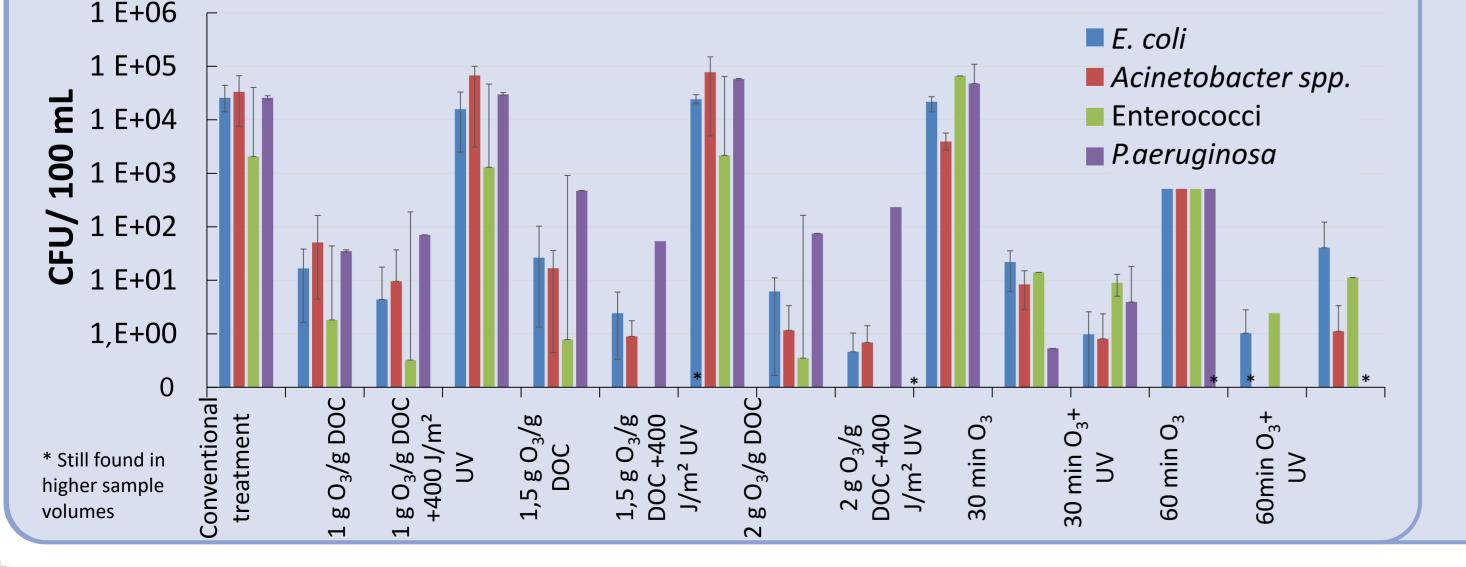
- Filtration through 0.2 μm membrane (600 mL -20 L).
- Considering only living bacteria with intact cell walls (utilizing PMA).

Microbiology - Cultivation

- Filtration through 0.45 µm nitrocellulose membrane (0.1-750 mL) depending on sample point and selective agar.
- Serial dilution for each sample.
- Local sample preparation, incubation, and evaluation at the WWTP.

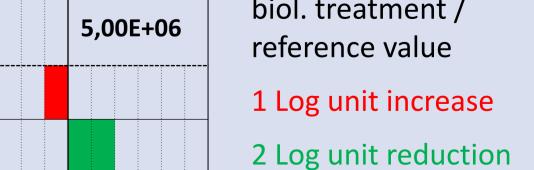
- Both, increasing of ozone concentration as well as ozone contact time have an additional benefit in a real WWTP.
- Increasing ozone concentration is more effective than prolonged contact time. Here the production of chemical transformation products is a critical issue.
- High risk antibiotic resistances were reduced below the LOD by every parameter variation.
- Reduction efficiencies were as high as analyzed for **ultrafiltration** in some cases.
- Cultivation based experiments confirmed the molecular biological methods, but were less distinct.
- Reduction does not mean elimination: Postprocessing regrowth can occur.

ΜΟΤΙVΑΤΙΟΝ


- Ultrafiltration yield the highest reduction values followed by a combination of ozone and UV- treatment.
- Ozone and UV- treatment in combination can be considered as an alternative for membrane filtration, although their efficiency by initial parameters were not as high.
- Ozone contact times and ozone concentrations/g DOC with UV were increased for further reduction increase of ARB/ARG.
- Ozone concentration was increased to 1, 1.5, and 2.0 g ozone/g DOC; ozone contact time increased from 5, 30, and 60 minutes; each with an additional UV- irradiation of 400 J/m².

	facultative-pathogenic bacteria									Antibiotic resistance genes													
		Enterococci	A. baumannii		E. coli	K. pneumoniae		P.aeruginosa		sul1	ermB-1		blaTEM		tetM		ctx-M-32		blaVim2		blaOxa48		
ntional ment	Raw wastewater																						
conver treat	Biol. treatement Sedimentation	2,25E+04	7,41	E+02	1,04E+04	7,50E	E+03		8,58E+02	4,35E+06		6,89E+04		1,83E+05		4,06E+04		1,31E+04	e	6,09E+03	9,73E+03		
u	Ozone (5 min 1 g/g DOC)																		L	.OD			
nriatic	Ozone +UV (5 min 1 g/g DOC und 400 J/m ²)																		L	.OD	LOD		
on va	Ozone (5 min 1.5 g/g DOC)	LOD	LOD			LOD			LOD										L	.OD	LOD		
ntrati	Ozone +UV (5 min 1.5 g/g DOC /400 J/m ²)	LOD	LOD			LOD			LOD										L	.OD	LOD		
oncer	Ozone (5 min 2 g/g DOC)	LOD	LOD			LOD			LOD										L	.OD	LOD		
Ŭ	Ozone +UV (5 min 2 g/g DOC /400 J/m ²)	LOD	LOD		LOD	LOD			LOD										L	.OD	LOD		
act ation	Ozone (30min 1 g/g DOC)																		L	.OD			
contact longatio	Ozone+ UV (30min 1 g/g DOC)/ 400J /m ²					LOD			LOD										L	.OD	LOD		
Ozone me pro	Ozone (60 min 1 g/g DOC)					LOD			LOD							LOD			L	.OD	LOD		
0 ² time	Ozone+ UV (60min 1 g/g DOC)/ 400 J/m ²				LOD	LOD										LOD				.OD	LOD		
	Ultrafiltration	LOD	LOD		LOD	LOD												LOD		.OD	LOD		

CULTIVATION


Reduction efficiencies were improved by

Caption

elevated ozone concentrations and contact times, in most of the cases.

- Ozone concentration of **1.5g/g DOC resulted in** elimination of most facultative-pathogenic bacteria.
- Effect of a subsequent UV- irradiation is independent of previous ozone treatment.
- Cultivation experiments support the more distinct qPCR results.

Acknowledgement: This project is funded by the German BMBF and is part of the *HyReKA* research project (02WRS1377B).

KIT – The Research University in the Helmholtz Association