Nanostructured multifunctional polymer films as hematopoietic stem cell culture substrates

Domenic Kratzer,[a] Thomas Tischer,[a] Christopher Barner-Kowollik,[b] Cornelia Lee-Thedieck[a]

[a] Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Germany.
[b] Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Germany.

1 Background and Aim

- Hematopoietic stem cells (HSCs) are used for treatment of malignant diseases of the blood (e.g. leukemia) but donors are rare.[1]
- The in vitro culturing of undifferentiated HSCs is strongly limited by currently available cell culture techniques.[2,3]
- The development of fully synthetic cell culture systems, mimicking the HSC niche in the bone marrow, could allow the expansion of HSCs’ in clinical applications.
- In vitro studies show that the arrangement of ligands on the nanometer scale influences the behavior of HSCs.[4,5]
- Multifunctional honeycomb-patterned porous films prepared via the breath figure approach[6,7] as potential cell culture systems, might help to understand and control HSCs’ growth.

2 Breath Figure Approach

- humid airflow
 - funnel
 - co-polymer solution in DCM or CS₂

- humid environment
 - condensation of water droplets
 - evaporation

- Top view
 - sample
 - water droplets
 - polymer solution
- Bottom view
 - precipitated polymer
 - pores

- Growth of water droplets on top of the organic surface leads to hexagonal ordered arrays
- Further evaporation of water droplets and organic solvent causes precipitation of the co-polymer at the solvent/water interface

- Nanostructured surface as potential cell culture substrate

3 First Results

- Synthesis of random p(St-co-HEMA) via RAFT polymerization (test system)
- Casting process using a custom designed box at constant humidity
 - Film morphology is affected by
 - air flow rate
 - relative humidity
 - solvent properties
 - solution concentration
 - type of polymer and polymer architecture
- Selection of SEM images: 40% relative humidity, 10 mg/mL polymer in DCM

4 Outlook

- Synthesis of co-polymers bearing functional groups which are suitable for the subsequent orthogonal modification with ligands (e.g. RGD, DLL1).
- Multifunctional co-polymers will be used for the fabrication of honeycomb-structured surfaces aiming for ligand distances in the nanometer scale. In the future, this polymer films will be compared to natural ECM derived surface coatings with regards to their effects on the proliferation of undifferentiated HSCs in order to establish the applicability of this approach.

contact: domenic.kratzer@kit.edu